Wdr5 Mediates Self-Renewal and Reprogramming via the Embryonic Stem Cell Core Transcriptional Network

نویسندگان

  • Yen-Sin Ang
  • Su-Yi Tsai
  • Dung-Fang Lee
  • Jonathan Monk
  • Jie Su
  • Kajan Ratnakumar
  • Junjun Ding
  • Yongchao Ge
  • Henia Darr
  • Betty Chang
  • Jianlong Wang
  • Michael Rendl
  • Emily Bernstein
  • Christoph Schaniel
  • Ihor R. Lemischka
چکیده

The embryonic stem (ES) cell transcriptional and chromatin-modifying networks are critical for self-renewal maintenance. However, it remains unclear whether these networks functionally interact and, if so, what factors mediate such interactions. Here, we show that WD repeat domain 5 (Wdr5), a core member of the mammalian Trithorax (trxG) complex, positively correlates with the undifferentiated state and is a regulator of ES cell self-renewal. We demonstrate that Wdr5, an "effector" of H3K4 methylation, interacts with the pluripotency transcription factor Oct4. Genome-wide protein localization and transcriptome analyses demonstrate overlapping gene regulatory functions between Oct4 and Wdr5. The Oct4-Sox2-Nanog circuitry and trxG cooperate in activating transcription of key self-renewal regulators, and furthermore, Wdr5 expression is required for the efficient formation of induced pluripotent stem (iPS) cells. We propose an integrated model of transcriptional and epigenetic control, mediated by select trxG members, for the maintenance of ES cell self-renewal and somatic cell reprogramming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rem2 GTPase maintains survival of human embryonic stem cells as well as enhancing reprogramming by regulating p53 and cyclin D1.

Human pluripotent stem cells, such as embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs), have the unique abilities of differentiation into any cell type of the organism (pluripotency) and indefinite self-renewal. Here, we show that the Rem2 GTPase, a suppressor of the p53 pathway, is up-regulated in hESCs and, by loss- and gain-of-function studies, that it is a major playe...

متن کامل

Ncoa3 functions as an essential Esrrb coactivator to sustain embryonic stem cell self-renewal and reprogramming.

Embryonic stem cell (ESC) pluripotency depends on a well-characterized gene regulatory network centered on Oct4, Sox2, and Nanog. In contrast, little is known about the identity of the key coregulators and the mechanisms by which they may potentiate transcription in ESCs. Alongside core transcription factors, the orphan nuclear receptor Esrrb (estrogen-related receptor β) is vital for the maint...

متن کامل

I-10: Transcriptomics in Oocyte Mediated Cellular Reprogramming

a:4:{s:10:"Background";s:1707:"Early embryonic development in mammals begins in transcriptional silence with an oocyte-mediated transcriptional reprogramming of parental gametes occurs during a so called across-the-board process of “erase-and-rebuild”. In this process, the parental transcription programs are erased long before (maternal) or soon thereafter (paternal) fertilization to generate a...

متن کامل

Comprehensive Identification of Krüppel-Like Factor Family Members Contributing to the Self-Renewal of Mouse Embryonic Stem Cells and Cellular Reprogramming

Pluripotency is maintained in mouse embryonic stem (ES) cells and is induced from somatic cells by the activation of appropriate transcriptional regulatory networks. Krüppel-like factor gene family members, such as Klf2, Klf4 and Klf5, have important roles in maintaining the undifferentiated state of mouse ES cells as well as in cellular reprogramming, yet it is not known whether other Klf fami...

متن کامل

Zfp281 mediates Nanog autorepression through recruitment of the NuRD complex and inhibits somatic cell reprogramming.

The homeodomain transcription factor Nanog plays an important role in embryonic stem cell (ESC) self-renewal and is essential for acquiring ground-state pluripotency during reprogramming. Understanding how Nanog is transcriptionally regulated is important for further dissecting mechanisms of ESC pluripotency and somatic cell reprogramming. Here, we report that Nanog is subjected to a negative a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 145  شماره 

صفحات  -

تاریخ انتشار 2011